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1. SUMMARY

During this report period, software for determining the delay time between two

waveforms was further developed and tested on real data. The main improvement was use of

the multitaper method of spectral analysis which has been shown to yield better results than

standard single-taper procedures. This procedure constitutes a significant improvement over

all previous studies of cross-spectral analysis based on the use of a single taper. An applica-

tion to closely-located Yucca Flat explosions recorded at four stations showed significant

improvement over single-taper results. Inter-source coherence for Pn was found to be

significantly greater when the two sources lay along the direction of wave propagation than

when perpendicular to it. Mean velocities along the four source-receiver paths were found to

be stable and significantly different, suggesting that propagation velocities may vary consider-

ably from one path to another. It seems therefore that at least a part of the observed location

errors are due to the assumption of a uniform path-independent velocity model in the compu-

tation of location. Analysis of data from two closely located explosions suggests that the

cross-spectral method may also be used to determine very small differences (of the order of

1%) between propagation velocities of regional phases. _
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2. INTRODUCTION

Location relative to a known reference event is often more useful and precise than abso-

lute event location. The use of relative location compensates for most of the errors arising

from path effects. Such location requires relative arrival times for pairs of events observed at

common stations, which can be obtained with high precision for similar events by waveform

cross-correlation. This estimate of the relative time based on the full waveform is generally

more precise than that based on rather subjective picks of the initial phase arrival. Conven-

tional cross-correlation slides one waveform past another, and the lag with the optimum corre-

lation coefficient is taken as the relative time. However, the cross-spectral analysis method

can yield relative delay times with resolution up to an order magnitude better than the seismo-

gram sampling interval.

Most of the effort during the report period was devoted to developing the software for

multitaper. An application to the available data from Yucca Flat explosions demonstrated

significant improvement in relative locations. The cross-spectrum method was also applied to

regional data from two closely located Pahute Mesa, NTS explosions recorded at two common

stations. Preliminary results suggest that the analysis can detect very small differences (of the

order of 1%) in the propagation velocities of regional phases generated by the two shots. A

knowledge of these differences may be useful in a comparison of the near-source properties of

closely located explosions.



3. CROSS-SPECTRAL ANALYSIS WITH MULTITAPER

Single taper cross-spectral analysis of regional data from Yucca Flat explosions with pre-

cisely known locations provided relative locations that were accurate to within about 1 km.

However, locations based on arrival times determined by alignment of the first peaks were

found to be somewhat better (Gupta and Davis, 1992). A possible reason for this disappoint-

ing performance was suspected to be the use of a cosine taper on rather short signal windows.

We therefore applied the multitaper method of spectral analysis which has been shown to

yield better results than standard single-taper procedures (Park et al., 1987; Zhu et al., 1989).

We employed the multitaper method, based on a family of tapers which are resistant to

spectral leakage, by mainly following the procedure described by Park et al. (1987) and Ver-

non et al. (1991). A set of k tapers vk(n,w) are generated which are functions of the time

series length n and the specified inner bandwidth w. The tapers are the eigenvectors of the

Toeplitz matrix with associated eigenvalues Xk. Following Park et al. (1987), w was selected

to be 4, and only those tapers with Xk greater than 0.9 were used. With these two restrictions,

k was found to be equal to 7, independent of the number of points in the signal window.

Consider two signals A and B represented by the time series fa(t) and fb(t), respectively.

The signals are windowed (e.g. 64 or 128 samples of data), calibrated, demeaned, and

detrended, providing the signals Xa(n) and Xb(n), respectively, where n is the number of sam-

ples in the selected window. Let Yak(N) and yk(N) represent the Fourier transforms of

vn, Xa(n) and vn Xb(n), where N = n+1, respectively.
2

An adaptive spectral estimate of fa(t), §Sa is formed by



I dak(N) Yak(N)12
Sa (1)

a k dk(N) 12

k

where the weights dak, which depend on frequency (N) and on the taper order k, are chosen to

reduce bias from spectral leakage. An initial spectral estimate is made by assuming

IyI212+ 1y:21
sa a= -2 a (2)

The first guess for weights is then made by

dk(N) = +(

-k Sa + (1-)Lk) [Xa(i)12

A new spectral estimate of Sa is made by inserting the weights from equation (3) into equa-

tion (1) and using this new value into equation (3) to compute the corresponding new weights.

This process is repeated until the difference between two successive Sa is less than 0.0001.

Once the weights have been determined, the multitaper cross-spectrum is computed from:

Z (•k)- • k dk(N) Yak(N) dk(N) Yk*(N)

(L) k k

k [ k (dk(N) 2 31/2 [ 1 (dk(N)2 11/2 (4)

k k

where * indicates the complex conjugate. If Yab is expressed as

Yab(N) = Re(N) + i Im(N), (5)

the phase spectrum O(N) is

O(N) = tan-, Im(N) (6)
Re(N)

If the two seismograms are identical in shape but have different amplitudes and are shifted in

time by r, then

fb(t) = k fa(t+t), (7)

and by the application of the shift theorem, the phase spectrum becomes

3



O(N) = 2 n Nt (8)

Thus the delay time c can be obtained simply by fitting a straight line through the phase of

the cross-spectrum with zero intercept. In fitting this slope, the values are weighted based on

the coherence yab:

_f2b 1 (9)
Yaa Ybb

The weighting factor, W(N) in the linear fit is based on the Hannon-Thomson processor

(Knapp and Carter, 1976), i. e.

Ya~b(N)
W(N) - (10)

1 - ya2b(N)

The slope of the line has a continuum of possible values, rather than discrete values,

with the result that estimates of delay time for highly coherent pairs can actually be an order

of magnitude more precise than the sample rate. This technique has been applied successfully

to local sequences of earthquakes with impressively precise locations (Ito, 1985; Fremont and

Malone, 1987).

Regional data from six closely spaced underground nuclear explosions at the Nevada

Test Site (NTS), recorded at the four broadband digital stations, ELK, KNB, LAC, and MNV

(Table 1 and Figure 1), have been analyzed to determine how the cross-spectral method may

best be used to improve relative locations. For these explosions, with precisely known loca-

tions, the near-source geological and geophysical properties are also known so that the

influence of parameters such as shot depth and geological environment can also be investi-

gated. Software for determining the delay time between two waveforms has been developed

and tested. The relative arrival times between two events recorded at a common station are

determined with a precision of 0.001 sec. As an example, results from the vertical component

4
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Figure 1. Map of six Yucca Flat explosions used in the study. Azimuthal directions and dis-
tances from BASEBALL to the four recording stations are indicated.



ELK records of the Yucca Flat explosions BASEBALL and PALIZA are shown in Figure 2.

The digital data are sampled at 42 samples/sec and the signal window is 64 points (about 1.5

sec). Figure 2 (bottom) shows the input waveforms which may be selected to be of any

desired duration. The signal window over which a cosine taper applies is also variable. The

top plot shows the phase of the cross-spectrum varying between - n and + n whereas the

lower plot shows the coherency, varying between 0 and 1, derived by using a bandwidth of

2.0 Hz. The delay time of 0.0477 (0.0473) sec is simply the slope of the phase of the cross-

spectrum over the specified range of 0.5-5.0 Hz and is obtained by fitting a slope through 0,

using a weighting scheme based on coherence of the cross-spectrum (equation 10); the quan-

tity within parentheses denotes one standard deviation.

TABLE 1

6 YUCCA FLAT EXPLOSIONS USED IN STUDY

No. DATE NAME mb P-WAVE SHOT DEPTH
VEL DEPTH OF WT

(KM/S) (KM) (KM)

1 06 Sep 1979 HEARTS (B) 5.892 1.763 0.6400 0.5070
2 14 Nov 1980 DAUPHIN (A) 4.554 1.420 0.3200 0.5800
3 15 Jan 1981 BASEBALL (B) 5.725 1.970 0.5639 0.5120
4 01 Oct 1981 PALIZA (A) 5.115 1.497 0.4724 0.5300
5 11 Nov 1981 TILCI (A) 5.035 1.600 0.4450 0.4940
6 12 Nov 1981 ROUSANNE (B) 5.458 1.580 0.5182 0.4950

Note: B and A denote shots below and above the water table, respectively.

Figure 3 shows results of cross-spectral analysis when the signal window is doubled to

128 points. A comparison with Figure 2 shows a decrease in the average coherency and an

increase in the delay time. Results when the cosine tapers in Figures 2 and 3 are replaced by

multitaper are shown in Figures 4 and 5, respectively. Note the significant improvement in

6
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Figure 2. Cross-spectral analysis for measuring delay times based on use of the cosine taper.
The two input waveforms at ELK (bottom), each 64 points long, provide the phase of the
cross-spectrum (top) and coherence based on bandwidth of 2.0 Hz for frequencies up to 10
Hz. Mean slope of the phase spectrum, averaged over the indicated frequency range of 0.5-
5.0 Hz, provides the delay time used to obtain the corrected arrival time for PALIZA.
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the determination of delay times as indicated by the improved fits of mean slope and the

reduced values of standard deviation.

Assuming BASEBALL to be the reference shot with known location and its first peak at

each station as the reference time, cross-spectral analysis was carried out to obtain the

corrected arrival times (such as those indicated on Figures 2, 3, 4, and 5) for each explosion

recorded at the four stations. Results based on use of the cosine taper and signal windows of

128 points were first determined. For each explosion, the four arrival times are used as input

to the LOCATE feature of the Analyst Review Station (ARS) to obtain the epicentral location

and the origin time. The arrival times (without any delay correction) for BASEBALL

recorded at the four stations are also used to compute the corresponding ARS location. The

ARS computed locations and the actual (known) locations of six explosions are shown in Fig-

ure 6. The ARS computed locations for the five shots (paired with BASEBALL) are shifted

by the amount of shift between the ARS computed and actual locations of BASEBALL. A

comparison of the shifted locations of each of the five shots with its actual location provides

the location error associated with each shot (Figure 6). The mean location error is only 1.32

(0.61) km. Cross spectral analysis based on the use of longer (256 points) windows was also

carried out for the same six explosions. Using a bandwidth of 1.0 Hz for deriving coherency

and a frequency range of 0.5-5.0 Hz for computing the delay time, the location results were

found to be very similar to those in Figure 6 in both the magnitude and azimuthal direction of

the location errors; the mean location error was 1.22 (0.61) km.

Locations based on the use of arrival times determined by simple alignment of the first

peaks at common stations are shown in Figure 7. A comparison with locations derived by

using the cross-spectral analysis (Figure 6) shows significant improvement, especially for the

11
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Figure 6. Location results for six Yucca Flat explosions based on arrival times derived from

cross-spectral analysis using the cosine taper and signal windows of 128 points. Actual loca-
tions, ARS computed locations, and locations with shift based on BASEBALL are shown; the
five lines indicate the error between the actual and computed locations. Mean location error
is 1.318 (0.614) km.

12



37.12
3.2'*MNV (238 KM) t ELK (412 KM)

B BASEBALL ---- R

R ROUSANNE

H HEARTS

D DAUPHIN

P PALIZA OD

T TILCI
A ACTUAL D R KNB (287 KM)

0 ARS COMPUTED H *B

X SHIFTED P
-- T ( B

OH
/T CH OP

OTT

C T

LAC (301 KM) 1 KM

37.04
-116.10 -116.00

Figure 7. Similar to Figure 6 but derived from simple alignment of the first peaks of all
explosions recorded at the four recording stations. Mean location error is 1.017 (0.218) km.
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two shots PALIZA and TILCI. The mean location error is only 1.017 (0.218) km. Possible

reasons for the smaller accuracy of the cross-spectral analysis are the spectral leakage and

variability for the estimates expected when cosine taper is used on rather short time series

(Vernon et al., 1991).

Location results based on use of the multitaper and signal windows of 64 points are

shown in Figure 8. There is significant improvement compared to the results with cosine

taper ( Figure 6); the mean location error is 1.010 (0.221) km. These results appear to be

impressive if one considers the large epicentral distances (about 200 km to 400 kin) and the

complex geology of the Nevada test site.

Analysis of regional data from Yucca Flat explosions also provides valuable information

regarding inter-source coherence of closely located explosions recorded at common stations.

A comparison of the coherency plots in Figures 2 and 3 or Figures 4 and 5 indicate that the

shorter signal windows of Pn have significantly better coherency over a much larger range of

frequency than the longer windows. This implies that the first arrivals in Pn are considerably

more similar than the later arriving phases, perhaps due to greater contamination by later-

arriving scattered energy. Furthermore, inter-source coherence for Pn appears to be

significantly greater when the two sources lie along the direction of wave propagation than

when perpendicular to it. This is illustrated by comparison of coherence at ELK and KNB for

two pairs of explosions BASEBALL and ROUSANNE (Figure 9) and BASEBALL and PAL-

IZA (Figure 10). These results were based on use of the multitaper and signal windows of

128 points. For BASEBALL and ROUSANNE, ELK and KNB are nearly along and perpen-

dicular to the direction of wave propagation, respectively. On the other hand, for BASE-

BALL and PALIZA, ELK and KNB approximate directions perpendicular to and along the

14
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Figure 8. Similar to Figure 6 but derived from cross-spectral analysis based on use of the
multitaper and signal windows of 64 points. Mean location error is 1.010 (0.221) km.
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Figure 9. Waveform and coherency plots for BASEBALL and ROUSANNE recorded at ELK
and KNB showing the inter-source coherency for Pn (over the frequency range of 0.1-3.0 Hz)
to be larger when the two sources lie nearly along the direction of wave propagation than
when approximately perpendicular to it.
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Figure 10. Waveform and coherency plots for BASEBALL and PALIZA recorded at ELK
and KNB, again showing the inter-source coherency for Pn (over the frequency range of 0.1-
3.0 Hz) to be larger when the two sources lie nearly along the direction of wave propagation
than when approximately perpendicular to it.

17



wave propagation. These results, based on use of the multitaper and signal windows of 128

points, are similar to the inter-sensor coherence of regional phases generally observed to be

greater along the radial direction than along the transverse direction. An attempt will be made

to exploit these coherency differences to improve locations. Analysis of the Lg phase showed

the inter-source coherence to be significantly smaller than for Pn, again similar to the

observed inter-sensor coherence results for Lg and Pn. Also, coherency appeared to vary

significantly from one station to another.

In order to understand what causes the discrepancy between the actual locations and

those computed from observations of Pn from the Yucca Flat explosions, we examined the

lateral variations in the Pn velocity under the test site. Pn arrival times from closely spaced

explosions can be used to estimate average velocities to various stations if the spatial locations

of the explosions are precisely known and data from at least two shots are available.

Consider a number of closely located sources, Si recorded at a number of well-separated

receivers, Rj. Let the average P-wave velocities from the limited source region to the rela-

tively distant receivers be ctj. If rij represents the distance from source Si to the receiver Rj

and zi are the origin times of the various sources, then the P-wave arrival times, Tij are given

by

= rij + zi (11)

Having data from two or more sources at two or more receivers, we can solve for aj by using

the method of least squares.

Using Pn arrival times, based on alignment of the first peaks, from six explosions (Table

1) recorded at the four stations, the mean velocities to the four stations ELK, KNB, LAC, and
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MNV were determined to be 7.051 (0.006), 6.636 (0.007), 6.767 (0.007), and 6.469 (0.008),

respectively. The quantities within parentheses, denoting one standard deviation of the mean,

are remarkably small so that the velocity differences are significant and outside the margin of

error. The large differences in mean velocities (maximum about 9%) along the four source-

receiver paths suggest that propagation velocities may vary considerably from one path to

another. Moreover, our results indicate velocities along the north-south direction to be some-

what larger than those along the east-west direction, in general agreement with the tectonics

of the region and the velocity measurements of Harmsen (1992). It seems therefore that at

least a part of the observed location errors are due to the assumption of a uniform path-

independent velocity model.
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4. COMPARISON OF DATA FROM I WO CLOSELY LOCATED SHOTS

Cross-spectrum analysis has been used to provide a high-precision method for measuring

temporal velocity changes in the earth's crust (Poupinet et al., 1987). The method compares

the scattered wave portions, or coda, of two highly similar waveforms, generated by a pair of

nearly identical sources (called doublets), re-corded at the same receiver at different times. By

analyzing progressive relative phase delays between the two doublet signals as a function of

elapsed time, velocity changes on the order of 0.01% could be measured. The high precision

of the doublet method is possible because coda waves from colocated sources will sample the

same regions and generally follow paths that increase in length with elapsed time. Thus a

small decrease in velocity occurring within the sampled region during the time period between

the doublet origin times will produce a relative delay that increases with elapsed time over

some portion of the scattered waves. If the velocity change is pervasive, the relative delay

may increase linearly over the entire coda. This trend of increasing delay is easier to detect

and measure than an isolated delay based on a single arrival. Using active, repeatable sources

instead of natural earthquakes, Roberts et al. (1992) used the doublet method for measuring

small velocity and attenuation changes in solids.

The Pahute Mesa explosions BUTEO (12 May 1965, shot depth 696 m, yield 0.7 kt) and

DURYEA (14 April 1966, shot depth 544 m, yield 65 kt) were closely located (probably in

the same hole) and generated similar records at two common LRSM stations, KN-UT and

MN-NV at epicentral distances of 321 and 201 kin, respectively (Blandford, 1976). Using 20

samples/sec data at KN-UT, time delays were measured for overlapping 128-point windows

incremented by I sec. A plot of the mean slopes of the phase spectra of each window, aver-

aged over the frequency range of 0.5-2.0 Hz, versus the elapsed time is shown in Figure 1 Ia.
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Figure 11. Comparison of the LRSM station KN-UT records of DURYEA and BUTEO
showing (a) delay time, (b) coherency, and (c) differential bandpassed (0.5-2.0 Hz) log-rmns
amplitude versus time starting about 2 sec before the onset of Pn. Results are based on over-
lapping windows of length 6.4 sec for (a) and (b) and 10 sec for (c) with incremental shift of
1.0 sec for (a) and (b) and 0.5 sec for (c). Bandpassed waveforms of the two explosions are
shown at bottom.
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The corresponding coherency is plotted in Figure lIb. In Figure 1 la, the mean slope, aver-

aged over the first 50 sec of data, appears to suggest a medium velocity differential of about

0.6%. Bandpassed (0.5-2.0 Hz) log-rms amplitudes, based on overlapping windows of length

6.4 sec and incremental shift of 0.5 sec, were also obtained for the two shots (see Gupta and

Wagner, 1992 for more details). Figure ilc shows the differential (DURYEA - BUTEO)

log-rms amplitude versus time starting about 2 sec before the onset of Pn. Bandpassed

waveforms of the two explosions are shown at bottom.

Results of similar processing of data from the same two explosions recorded at MN-NV

are shown in Figure 12. The mean slope in Figure 12a, averaged over the first 25 sec of data,

suggests a medium velocity differential of about 1.0%. These results, although preliminary

and subject to revision in view of the coherency declining rapidly with time, suggest that the

cross-spectral analysis can be used to determine very small differences between similar

waveforms of two closely spaced explosions.
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5. CONCLUSIONS

A comparison of relative locations based on application of a single taper versus the mul-

titaper to cross-spectral analysis of regional data from Yucca Flat explosions shows significant

improvement when the multitaper is used. An accuracy of about 1 km has been achieved; an

impressive result if one considers the large epicentral distances (about 240 and 410 km) and

the complex geology around the Nevada Test Site. Inter-source coherence for Pn is found to

be significantly greater when the two sources lie along the direction of wave propagation than

when perpendicular to it. Mean velocities along paths from the Yucca Flat source region to

four stations are found to be stable and significantly different, suggesting that propagation

velocities may vary considerably from one path to another. This means that at least a part of

the observed location errors are due to the assumption of a uniform path-independent velocity

model. Analysis of regional data from two closely located shots suggests that the cross-

spectral method may also be used to determine very small differences (of the order of 1%)

between propagation velocities of regional phases from pairs of closely spaced explosions.
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